Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Imaging Behav ; 18(1): 19-33, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821673

RESUMO

This study intended to investigate the frequency specific brain oscillation activity in patients with acute basal ganglia ischemic stroke (BGIS) by using the degree centrality (DC) method. A total of 34 acute BGIS patients and 44 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (rs-fMRI) scanning. The DC values in three frequency bands (conventional band: 0.01-0.08 Hz, slow­4 band: 0.027-0.073 Hz, slow­5 band: 0.01-0.027 Hz) were calculated. A two-sample t-test was used to explore the between-group differences in the conventional frequency band. A two-way repeated-measures analysis of variance (ANOVA) was used to analyze the DC differences between groups (BGIS patients, HCs) and bands (slow­4, slow­5). Moreover, correlations between DC values and clinical indicators were performed. In conventional band, the DC value in the right middle temporal gyrus was decreased in BGIS patients compared with HCs. Significant differences of DC were observed between the two bands mainly in the bilateral cortical brain regions. Compared with the HCs, the BGIS patients showed increased DC in the right superior temporal gyrus and the left precuneus, but decreased mainly in the right inferior temporal gyrus, right inferior occipital gyrus, right precentral, and right supplementary motor area. Furthermore, the decreased DC in the right rolandic operculum in slow-4 band and the right superior temporal gyrus in slow-5 band were found by post hoc two-sample t-test of main effect of group. There was no significant correlation between DC values and clinical scales after Bonferroni correction. Our findings showed that the DC changes in BGIS patients were frequency specific. Functional abnormalities in local brain regions may help us to understand the underlying pathogenesis mechanism of brain functional reorganization of BGIS patients.


Assuntos
AVC Isquêmico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Gânglios da Base/diagnóstico por imagem
2.
Brain Imaging Behav ; 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150133

RESUMO

Anxiety disorders (ADs) are a group of prevalent and destructive mental illnesses, but the current understanding of their underlying neuropathology is still unclear. Employing voxel-based morphometry (VBM), previous studies have demonstrated several common brain regions showing grey matter volume (GMV) abnormalities. However, contradictory results have been reported among these studies. Considering that different subtypes of ADs exhibit common core symptoms despite different diagnostic criteria, and previous meta-analyses have found common core GMV-altered brain regions in ADs, the present research aimed to combine the results of individual studies to identify common GMV abnormalities in ADs. Therefore, we first performed a systematic search in PubMed, Embase, and Web of Science on studies investigating GMV differences between patients with ADs and healthy controls (HCs). Then, the anisotropic effect-size signed differential mapping (AES-SDM) was applied in this meta-analysis. A total of 24 studies (including 25 data sets) were included in the current study, and 906 patients with ADs and 1003 HCs were included. Compared with the HCs, the patients with ADs showed increased GMV in the left superior parietal gyrus, right angular gyrus, left precentral gyrus, and right lingual gyrus, and decreased GMV in the bilateral insula, bilateral thalamus, left caudate, and right putamen. In conclusion, the current study has identified some abnormal GMV brain regions that are related to the pathological mechanisms of anxiety disorders. These findings could contribute to a better understanding of the underlying neuropathology of ADs.

3.
Cell Biosci ; 13(1): 202, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932814

RESUMO

BACKGROUND: Ovarian cancer (OC) typically develops an immunosuppressive microenvironment by funtional changes of host immune cells. Dysregulated m6A level is associated with cancer progression via the intrinsic oncogenic pathways. However, the role of m6A in regulating host immune cell function during anti-tumor immunity needs comprehensive analysis. This study aimed to investigate the role of METTL3, a catalytic subunit of the methyltransferase complex, in regulating host immune cell response against OC. METHODS: In this study, myeloid-specific Mettl3 gene knockout (Mettl3-cKO) mice were bred using the Cre-LoxP system. Intraperitoneally injection of ID8 cells was used as a syngeneic OC model. Furthermore, the compositions of immune cell populations were analyzed by flow cytometry and single-cell sequencing. Moreover, chemokines and cytokines secretion were assessed using ELISA. Lastly, the role of METTL3 in regulating IL-1ß secretion and inflammasome activation in bone marrow-derived macrophages cocultured with ID8 cells was specified by ELISA and immunoblotting. RESULTS: It was revealed that OC cell growth was enhanced in Mettl3-cKO mice. Furthermore, a shift of decreased M1 to increased M2 macrophage polarization was observed during OC progression. Moreover, Mettl3 depletion in myeloid lineage cells increased secretion of CCL2 and CXCL2 in peritoneal lavage fluild. Interestingly, Mettl3 deficiency enhanced IL-1ß secretion induced by viable ID8 cells independent of inflammasome activation and cell death. Therefore, OC cells in tumor-bearing mice trigger a slight inflammatory response with a low-to-moderate secretion of pro-inflammatory cytokines and chemokines. CONCLUSION: This study provides new insights into METTL3-mediated m6A methylation, which regulates host immune response against OC.

4.
Atten Percept Psychophys ; 85(8): 2894-2906, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37831363

RESUMO

Panum's limiting case is a phenomenon of monocular occlusion in binocular vision. This occurs when one object is occluded by the other object for one eye, but the two objects are both visible for the other eye. Although previous studies have found that vertical gradient of horizontal disparity and cue conflict are two important factors for double fusion, the effect of training on the sensitivity and stability of Panum's limiting case remains unknown. The current study trained 26 participants for 5 days with several of Panum's configurations (Gilliam, Frisby, and Wang series). The latency and duration of double fusion were recorded to examine the effects of training on sensitivity and stability of double fusion in Panum's limiting case. For each level of vertical gradient of horizontal disparity and cue conflict, the latency of double fusion decreased and the duration of double fusion increased with each additional training session. The results showed that vertical gradient of horizontal disparity and cue conflict interacted, and the duration of high cue conflict was significantly shorter than that of medium and low cue conflict for each level of vertical gradient of horizontal disparity. The findings suggest that there is an effect of training for vertical gradient of horizontal disparity and cue conflict in Panum's limiting case, and that the three factors jointly affect the sensitivity and stability of double fusion.


Assuntos
Percepção de Profundidade , Visão Binocular , Humanos , Disparidade Visual
6.
J Psychiatr Res ; 165: 325-335, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37573797

RESUMO

BACKGROUND: Recent studies using resting-state functional magnetic resonance imaging (rs-fMRI) demonstrate that there is aberrant regional spontaneous brain activity in obsessive-compulsive disorders (OCD). Nevertheless, the results of previous studies are contradictory, especially in the abnormal brain regions and the directions of their activities. It is necessary to perform a meta-analysis to identify the common pattern of altered regional spontaneous brain activity in patients with OCD. METHODS: The present study conducted a systematic search for studies in English published up to May 2023 in PubMed, Web of Science, and Embase. These studies measured differences in regional spontaneous brain activity at the whole brain level using regional homogeneity (ReHo), the amplitude of low-frequency fluctuations (ALFF) and the fractional amplitude of low-frequency fluctuations (fALFF). Then the Anisotropic effect-size version of seed-based d mapping (AES-SDM) was used to investigate the consistent abnormality of regional spontaneous brain activity in patients with OCD. RESULTS: 27 studies (33 datasets) were included with 1256 OCD patients (650 males, 606 females) and 1176 healthy controls (HCs) (588 males, 588 females). Compared to HCs, patients with OCD showed increased spontaneous brain activity in the right inferior parietal gyrus (Brodmann Area 39), left median cingulate and paracingulate gyri (Brodmann Area 24), bilateral inferior cerebellum, right middle frontal gyrus (Brodmann Area 46), left inferior frontal gyrus in triangular part (Brodmann Area 45) and left middle frontal gyrus in orbital part (Brodmann Area 11). Meanwhile, decreased spontaneous brain activity was identified in the right precentral gyrus (Brodmann Area 4), right insula (Brodmann Area 48), left postcentral gyrus (Brodmann Area 43), bilateral superior cerebellum and left caudate (Brodmann Area 25). CONCLUSIONS: This meta-analysis provided a quantitative review of spontaneous brain activity in OCD. The results demonstrated that the brain regions in the frontal lobe, sensorimotor cortex, cerebellum, caudate and insula are crucially involved in the pathophysiology of OCD. This research contributes to the understanding of the pathophysiologic mechanism underlying OCD and could provide a new perspective on future diagnosis and treatment of OCD.

7.
Materials (Basel) ; 16(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629849

RESUMO

This research paper systematically investigates the combined influence of fly ash, cementitious capillary crystalline waterproofing (CCCW) materials, and polypropylene fibers on the mechanical properties and impermeability of concrete through comprehensive orthogonal tests. Microscopic morphological changes in the concrete induced by different composite materials are examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) testing. The objective is to facilitate a beneficial synergetic interaction among these materials to develop highly permeable, crack-resistant concrete. Key findings of this study are: (1) The study unveils the impact of the concentration of three additive materials on the concrete's compressive strength, tensile strength, and penetration height, thereby outlining their significant influence on the mechanical properties and impermeability of the concrete; (2) An integrated scoring method determined the optimal composite dosage of three materials: 15% fly ash, 2% CCCW, and polypropylene fibers at 1.5 kg/m3. This combination increased the concrete's compressive strength by 12.5%, tensile strength by 48.4%, and decreased the average permeability height by 63.6%; (3) The collective introduction of these three materials notably augments the hydration reaction of the cement, resulting in denser concrete microstructure, enhanced bonding between fibers and matrix, and improved concrete strength and durability.

8.
Perception ; 52(9): 613-628, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37408435

RESUMO

The origin of depth in Panum's limiting case is unclear at present, so we investigated the depth perception mechanism using a triangle type of Panum's stimulus with a slant effect and clear criterion. Experiment 1 explored whether participants can correctly perceive fixation and nonfixation features using the fixation point and quick representation of stimuli, then examined whether participants' depth judgments supported double fusion or single fusion. The results of Experiment 1 showed that participants could correctly perceive the depth of fixation and nonfixation features. That is, it supported double fusion. In Experiment 2, we examined whether the depth perceived by observers comes from depth contrast. The results of Experiment 2 showed that the depth of the two features perceived after binocular fusion did not originate from the depth contrast. The findings suggest that the depth perception mechanism of Panum's limiting case is more likely to be double fusion.


Assuntos
Percepção de Profundidade , Visão Binocular , Humanos , Disparidade Visual
9.
Materials (Basel) ; 16(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36984071

RESUMO

As a new type of pre-reinforcement material for tunnel faces, glass fiber-reinforced polymer (GFRP) bolts can effectively and safely improve the stability of tunnel faces in soft surrounding rocks and speed up excavation. Therefore, in this paper, systematic research is carried out on the bond strength of GFRP bolts in tunnel faces and their relative pre-reinforcement parameters. Firstly, the effects of rebar diameter, anchorage length, and mortar strength on the bonding properties of GFRP bars were studied by indoor pull-out tests. The bond strength-slip curves under different working conditions were obtained, and the curves showed that the ultimate bond strength between GFRP bars and mortar was negatively correlated with the diameter of GFRP bars but positively correlated with the strength of the mortar. In addition, the increase in anchorage length led to a reduction in bonding strength. Secondly, inverse analysis was used to analyse the mechanical parameters of the bond performance of the anchor bars by the finite difference software FLAC3D, and the results indicated that 1/5 of the compressive strength of the GFRP bar grouting body can be taken as the ultimate bond strength to calculate the cohesive strength of the grout. Additionally, the formula of GFRP bar grouting body stiffness was revised. Finally, based on the results of laboratory tests and the inverse analysis, the numerical simulation analysis results showed that the optimal reinforcement configuration for a shallow buried tunnel face surrounded by weak rock is to use GFRP bars with a length of 17 m arranged in the center circle of the tunnel face with a reasonable reinforcement density of 1.0 bolt/m2. The calculation formula of the stiffness and cohesion strength of the GFRP bar grouting body and the reinforcement scheme proposed in this paper can provide a reference for the construction of shallowly buried rock tunnels in soft surrounding rock.

10.
Brain Sci ; 13(3)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36979194

RESUMO

Depression has become one of the most common mental illnesses, causing serious physical and mental harm. However, there remain unclear and uniform physiological indicators to support the diagnosis of clinical depression. This study aimed to use machine learning techniques to investigate the abnormal multidimensional EEG features in patients with depression. Resting-state EEG signals were recorded from 41 patients with depression and 34 healthy controls. Multiple dimensional characteristics were extracted, including power spectral density (PSD), fuzzy entropy (FE), and phase lag index (PLI). These three different dimensional characteristics with statistical differences between two groups were ranked by three machine learning algorithms. Then, the ranked characteristics were placed into the classifiers according to the importance of features to obtain the optimal feature subset with the highest classification accuracy. The results showed that the optimal feature subset contained 86 features with the highest classification accuracy of 98.54% ± 0.21%. According to the statistics of the optimal feature subset, PLI had the largest number of features among the three categories, and the number of beta features was bigger than other rhythms. Moreover, compared to the healthy controls, the PLI values in the depression group increased in theta and beta rhythms, but decreased in alpha1 and alpha2 rhythms. The PSD of theta and beta rhythms were significantly greater in depression group than that in healthy controls, and the FE of beta rhythm showed the same trend. These findings indicate that the distribution of abnormal multidimensional features is potentially useful for the diagnosis of depression and understanding of neural mechanisms.

11.
Entropy (Basel) ; 24(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36554120

RESUMO

Driving fatigue is the main cause of traffic accidents, which seriously affects people's life and property safety. Many researchers have applied electroencephalogram (EEG) signals for driving fatigue detection to reduce negative effects. The main challenges are the practicality and accuracy of the EEG-based driving fatigue detection method when it is applied on the real road. In our previous study, we attempted to improve the practicality of fatigue detection based on the proposed non-hair-bearing (NHB) montage with fewer EEG channels, but the recognition accuracy was only 76.47% with the random forest (RF) model. In order to improve the accuracy with NHB montage, this study proposed an improved transformer architecture for one-dimensional feature vector classification based on introducing the Gated Linear Unit (GLU) in the Attention sub-block and Feed-Forward Networks (FFN) sub-block of a transformer, called GLU-Oneformer. Moreover, we constructed an NHB-EEG-based feature set, including the same EEG features (power ratio, approximate entropy, and mutual information (MI)) in our previous study, and the lateralization features of the power ratio and approximate entropy based on the strategy of brain lateralization. The results indicated that our GLU-Oneformer method significantly improved the recognition performance and achieved an accuracy of 86.97%. Our framework demonstrated that the combination of the NHB montage and the proposed GLU-Oneformer model could well support driving fatigue detection.

12.
Front Hum Neurosci ; 16: 1074587, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504623

RESUMO

Growing evidences indicate that age plays an important role in the development of mental disorders, but few studies focus on the neuro mechanisms of generalized anxiety disorder (GAD) in different age groups. Therefore, this study attempts to reveal the neurodynamics of Young_GAD (patients with GAD under the age of 50) and Old_GAD (patients with GAD over 50 years old) through statistical analysis of multidimensional electroencephalogram (EEG) features and machine learning models. In this study, 10-min resting-state EEG data were collected from 45 Old_GAD and 33 Young_GAD. And multidimensional EEG features were extracted, including absolute power (AP), fuzzy entropy (FE), and phase-lag-index (PLI), on which comparison and analyses were performed later. The results showed that Old_GAD exhibited higher power spectral density (PSD) value and FE value in beta rhythm compared to theta, alpha1, and alpha2 rhythms, and functional connectivity (FC) also demonstrated significant reorganization of brain function in beta rhythm. In addition, the accuracy of machine learning classification between Old_GAD and Young_GAD was 99.67%, further proving the feasibility of classifying GAD patients by age. The above findings provide an objective basis in the field of EEG for the age-specific diagnosis and treatment of GAD.

13.
Neural Plast ; 2022: 2219993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437903

RESUMO

Objective: This study is aimed at exploring alteration in motor-related effective connectivity in individuals with transient ischemic attack (TIA). Methods: A total of 48 individuals with TIA and 41 age-matched and sex-matched healthy controls (HCs) were recruited for this study. The participants were scanned using MRI, and their clinical characteristics were collected. To investigate motor-related effective connectivity differences between individuals with TIA and HCs, the bilateral primary motor cortex (M1) was used as the regions of interest (ROIs) to perform a whole-brain Granger causality analysis (GCA). Furthermore, partial correlation was used to evaluate the relationship between GCA values and the clinical characteristics of individuals with TIA. Results: Compared with HCs, individuals with TIA demonstrated alterations in the effective connectivity between M1 and widely distributed brain regions involved in motor, visual, auditory, and sensory integration. In addition, GCA values were significantly correlated with high- and low-density lipoprotein cholesterols in individuals with TIA. Conclusion: This study provides important evidence for the alteration of motor-related effective connectivity in TIA, which reflects the abnormal information flow between different brain regions. This could help further elucidate the pathological mechanisms of motor impairment in individuals with TIA and provide a new perspective for future early diagnosis and intervention for TIA.


Assuntos
Ataque Isquêmico Transitório , Córtex Motor , Humanos , Ataque Isquêmico Transitório/diagnóstico por imagem , Córtex Motor/diagnóstico por imagem , Encéfalo , Imageamento por Ressonância Magnética , Mapeamento Encefálico
14.
Sensors (Basel) ; 22(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298387

RESUMO

Mental fatigue is a widely studied topic on account of its serious negative effects. But how the neural mechanism of task switching before and after mental fatigue remains a question. To this end, this study aims to use brain functional network features to explore the answer to this question. Specifically, task-state EEG signals were recorded from 20 participants. The tasks include a 400-s 2-back-task (2-BT), followed by a 6480-s of mental arithmetic task (MAT), and then a 400-s 2-BT. Network features and functional connections were extracted and analyzed based on the selected task switching states, referred to from Pre_2-BT to Pre_MAT before mental fatigue and from Post_MAT to Post_2-BT after mental fatigue. The results showed that mental fatigue has been successfully induced by long-term MAT based on the significant changes in network characteristics and the high classification accuracy of 98% obtained with Support Vector Machines (SVM) between Pre_2-BT and Post_2-BT. when the task switched from Pre_2-BT to Pre_MAT, delta and beta rhythms exhibited significant changes among all network features and the selected functional connections showed an enhanced trend. As for the task switched from Post_MAT to Post_2-BT, the network features and selected functional connectivity of beta rhythm were opposite to the trend of task switching before mental fatigue. Our findings provide new insights to understand the neural mechanism of the brain in the process of task switching and indicate that the network features and functional connections of beta rhythm can be used as neural markers for task switching before and after mental fatigue.


Assuntos
Eletroencefalografia , Fadiga Mental , Humanos , Eletroencefalografia/métodos , Encéfalo , Mapeamento Encefálico , Máquina de Vetores de Suporte
15.
Brain Imaging Behav ; 16(6): 2627-2636, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36163448

RESUMO

As a developmental disorder, autism spectrum disorder (ASD) has drawn much attention due to its severe impacts on one's language capacity. Broca's area, an important brain region of the language network, is largely involved in language-related functions. Using the Autism Brain Image Data Exchange (ABIDE) dataset, a mega-analysis was performed involving a total of 1454 participants (including 618 individuals with ASD and 836 healthy controls (HCs). To detect the neural pathophysiological mechanism of ASD from the perspective of language, we conducted a functional connectivity (FC) analysis with Broca's area as the seed in multiple frequency bands (conventional: 0.01-0.08 Hz; slow-4: 0.027-0.073 Hz; slow-5: 0.01-0.027 Hz). We found that compared with HC, ASD patients demonstrated increased FC in the left thalamus, left precuneus, left anterior cingulate and paracingulate gyri, and left medial orbital of the superior frontal gyrus in the conventional frequency band (0.01-0.08 Hz). The results of the slow-5 frequency band (0.01-0.027 Hz) presented increased FC values of the left precuneus, left medial orbital of the superior frontal gyrus, right medial orbital of the superior frontal gyrus and right thalamus. No significant cluster was detected in the slow-4 frequency band (0.027-0.073 Hz). In conclusion, the abnormal functional connectivity in patients with ASD has frequency-specific properties. Furthermore, the slow-5 frequency band (0.01-0.027 Hz) mainly contributed to the findings of the conventional frequency band (0.01-0.08 Hz). The current study might shed new light on the neural pathophysiological mechanism of language impairments in people with ASD.


Assuntos
Transtorno do Espectro Autista , Humanos , Transtorno do Espectro Autista/diagnóstico por imagem , Mapeamento Encefálico/métodos , Vias Neurais/diagnóstico por imagem , Área de Broca , Imageamento por Ressonância Magnética/métodos
16.
Front Neurosci ; 16: 953742, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979335

RESUMO

Background: Myotonic dystrophy type 1 (DM1) is the most common and dominant inherited neuromuscular dystrophy disease in adults, involving multiple organs, including the brain. Although structural measurements showed that DM1 is predominantly associated with white-matter damage, they failed to reveal the dysfunction of the white-matter. Recent studies have demonstrated that the functional activity of white-matter is of great significance and has given us insights into revealing the mechanisms of brain disorders. Materials and methods: Using resting-state fMRI data, we adopted a clustering analysis to identify the white-matter functional networks and calculated functional connectivity between these networks in 16 DM1 patients and 18 healthy controls (HCs). A two-sample t-test was conducted between the two groups. Partial correlation analyzes were performed between the altered white-matter FC and clinical MMSE or HAMD scores. Results: We identified 13 white-matter functional networks by clustering analysis. These white-matter functional networks can be divided into a three-layer network (superficial, middle, and deep) according to their spatial distribution. Compared to HCs, DM1 patients showed increased FC within intra-layer white-matter and inter-layer white-matter networks. For intra-layer networks, the increased FC was mainly located in the inferior longitudinal fasciculus, prefrontal cortex, and corpus callosum networks. For inter-layer networks, the increased FC of DM1 patients is mainly located in the superior corona radiata and deep networks. Conclusion: Results demonstrated the abnormalities of white-matter functional connectivity in DM1 located in both intra-layer and inter-layer white-matter networks and suggested that the pathophysiology mechanism of DM1 may be related to the white-matter functional dysconnectivity. Furthermore, it may facilitate the treatment development of DM1.

17.
Front Neurosci ; 16: 927556, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35924226

RESUMO

Social function impairment is the core deficit of autism spectrum disorder (ASD). Although many studies have investigated ASD through a variety of neuroimaging tools, its brain mechanism of social function remains unclear due to its complex and heterogeneous symptoms. The present study aimed to use resting-state functional magnetic imaging data to explore effective connectivity between the right temporoparietal junction (RTPJ), one of the key brain regions associated with social impairment of individuals with ASD, and the whole brain to further deepen our understanding of the neuropathological mechanism of ASD. This study involved 1,454 participants from 23 sites from the Autism Brain Imaging Data Exchange (ABIDE) public dataset, which included 618 individuals with ASD and 836 with typical development (TD). First, a voxel-wise Granger causality analysis (GCA) was conducted with the RTPJ selected as the region of interest (ROI) to investigate the differences in effective connectivity between the ASD and TD groups in every site. Next, to obtain further accurate and representative results, an image-based meta-analysis was implemented to further analyze the GCA results of each site. Our results demonstrated abnormal causal connectivity between the RTPJ and the widely distributed brain regions and that the connectivity has been associated with social impairment in individuals with ASD. The current study could help to further elucidate the pathological mechanisms of ASD and provides a new perspective for future research.

18.
Materials (Basel) ; 15(15)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35897534

RESUMO

Steel fibers are widely used because they can effectively improve the tensile, compressive and flexural properties of concrete structures. The selection of steel fiber dosage and aspect ratio at high temperature has an important impact on the flexural toughness of concrete components post-fire. In this paper, discussions are made on the simulated fire test in compliance with the ISO 834 standard to study the steel fiber-reinforced concrete (SFRC) components post-fire. The research reveals the influence of two commonly used steel fiber aspect ratios (50, 70) and steel fiber dosages (30 kg/m3, 40 kg/m3, 45 kg/m3) on the changes of the internal temperature field, the initial crack flexural strength and the flexural toughness of the SFRC components under a single-side fire. Moreover, combined with the four-point flexural test of the SFRC components post fire, the research also describes the damage of high temperatures to the flexural toughness of SFRC components, and suggests a calculation formula for SFRC thermal conductivity by way of the numerical inversion method. The results of this study have verified that the incorporation of steel fiber into concrete helps to reduce its internal thermal stress difference and improve the crack resistance and fire resistance of the concrete. Moreover, under high temperature conditions, the concrete component added with the steel fiber in an aspect ratio of 70 and a dosage of 45 kg/m3 increased their initial crack flexural strength by 56.8%, higher than that of plain concrete components, and the loss of equivalent flexural strength and flexural toughness of SFRC post fire was only 45.2% and 13.6%, respectively. The proposed calculation formula of thermal conductivity can provide a reference for a numerical simulation study of the temperature field of SFRC components in a high temperature environment.

19.
J Affect Disord ; 312: 69-77, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35710036

RESUMO

BACKGROUND: Autism spectrum disorder (ASD) is associated with altered brain connectivity. Previous studies have focused on the static functional connectivity pattern from amygdala subregions in ASD while ignoring its dynamics. Considering that dynamic functional connectivity (dFC) can provide different perspectives, the present study aims to investigate the dFC pattern of the amygdala subregions in ASD patients. METHODS: Data of 618 ASD patients and 836 typical controls (TCs) of 30 sites were obtained from the Autism Brain Imaging Data Exchange (ABIDE) database. The sliding window approach was applied to conduct seed-based dFC analysis. The seed regions were bilateral basolateral (BLA) and centromedial-superficial amygdala (CSA). A two-sample t-test was done at each site. Image-based meta-analysis (IBMA) based on the results from all sites was performed. Correlation analysis was conducted between the dFC values and the clinical scores. RESULTS: The ASD patients showed lower dFC between the left BLA and the bilateral inferior temporal (ITG)/left superior frontal gyrus, between the right BLA and right ITG/right thalamus/left superior temporal gyrus, and between the right CSA and middle temporal gyrus. The ASD patients showed higher dFC between the left BLA and temporal lobe/right supramarginal gyrus, between the right BLA and left calcarine gyrus, and between the left CSA and left calcarine gyrus. Correlation analysis revealed that the symptom severity was positively correlated with the dFC between the bilateral BLA and ITG in ASD. CONCLUSIONS: Abnormal dFC of the specific amygdala subregions may provide new insights into the pathological mechanisms of ASD.


Assuntos
Transtorno do Espectro Autista , Imageamento por Ressonância Magnética , Tonsila do Cerebelo , Transtorno do Espectro Autista/diagnóstico por imagem , Transtorno do Espectro Autista/patologia , Encéfalo , Mapeamento Encefálico/métodos , Humanos , Imageamento por Ressonância Magnética/métodos
20.
Neural Plast ; 2022: 1560748, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356364

RESUMO

Purpose: Several functional magnetic resonance imaging (fMRI) studies have investigated the resting-state functional connectivity (rs-FC) changes in the primary motor cortex (M1) in patients with acute basal ganglia ischemic stroke (BGIS). However, the frequency-specific FC changes of M1 in acute BGIS patients are still unclear. Our study was aimed at exploring the altered FC of M1 in three frequency bands and the potential features as biomarkers for the identification by using a support vector machine (SVM). Methods: We included 28 acute BGIS patients and 42 healthy controls (HCs). Seed-based FC of two regions of interest (ROI, bilateral M1s) were calculated in conventional, slow-5, and slow-4 frequency bands. The abnormal voxel-wise FC values were defined as the features for SVM in different frequency bands. Results: In the ipsilesional M1, the acute BGIS patients exhibited decreased FC with the right lingual gyrus in the conventional and slow-4 frequency band. Besides, the acute BGIS patients showed increased FC with the right medial superior frontal gyrus (SFGmed) in the conventional and slow-5 frequency band and decreased FC with the left lingual gyrus in the slow-5 frequency band. In the contralesional M1, the BGIS patients showed lower FC with the right SFGmed in the conventional frequency band. The higher FC values with the right lingual gyrus and left SFGmed were detected in the slow-4 frequency band. In the slow-5 frequency band, the BGIS patients showed decreased FC with the left calcarine sulcus. SVM results showed that the combined features (slow-4+slow-5) had the highest accuracy in classification prediction of acute BGIS patients, with an area under curve (AUC) of 0.86. Conclusion: Acute BGIS patients had frequency-specific alterations in FC; SVM is a promising method for exploring these frequency-dependent FC alterations. The abnormal brain regions might be potential targets for future researchers in the rehabilitation and treatment of stroke patients.


Assuntos
AVC Isquêmico , Gânglios da Base/diagnóstico por imagem , Mapeamento Encefálico/métodos , Humanos , AVC Isquêmico/diagnóstico por imagem , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...